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Abstract: Long computation times are a major obstacle for the application of in-situ monitoring in additive manufacturing. This paper presents rapid in-situ monitoring, which 
returns a control value within typical build times. Observing powder bed fusion processes reveals that unsuitable parameter settings influence the appearance of the molten surface 
and the surrounding powder bed. The presented research approach evaluates the changing appearance of the exposed layers, in combination with the information from the pre-
process about the position and geometry of the components in each layer. Grayscale images are captured with the build envelope camera and examined regarding the grayscale 
distribution in the critical areas surrounding the component boundaries. The grayscale distribution is then used to predict product quality by using standard statistical methods. 
The combination of the pre-process data and the fast analysis of the grayscale distribution allows promptly calculating a performance indicator for required process intervention 
and control. 
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1 INTRODUCTION 
 

In many industries, additive manufacturing (AM) is 
increasingly focused on the production of final parts, as it has 
the potential to solve certain problems in the context of 
decreasing lot sizes and product individualization [1]. To 
exploit the full potential of the technology, AM has to be 
completely integrated into the production process. This 
requires certain changes in the production process itself. For 
instance, AM machines have to be embedded into industrial 
process chains by increasing the level of automation and 
developing consistent data models [2]. 

Furthermore, the process quality of AM processes has to 
be improved to allow the production of reliable part quality. 
The implementation of process monitoring systems can help 
to improve the limited or unproven repeatability of the build 
process. At the current state of research and in industrial 
applications, many AM machines are already equipped with 
certain process monitoring tools. Though the existing process 
monitoring solutions show a potential to improve the 
reliability of the SLM process, they are not yet fully 
applicable for process control [3]. 
 
2 SELECTIVE LASER MELTING 

 
 The term additive manufacturing (AM) describes 
different technologies that create parts directly from three-
dimensional CAD data, by additive joining of volume 
elements, usually in the form of layers [4]. Today, several 
AM technologies show a level of maturity that enables the 
application in series production. One of these is Laser 
Powder Bed Fusion of Metals (M-LPBF). In principle with 
this method, a layer of powder is spread onto a build platform 
and afterward selectively fused by use of a laser beam in the 
area where the part is to be generated. Next, the platform is 
lowered minimally and a new layer is spread and fused again. 
This procedure is repeated until the final height of the product 
is reached. Thus, the product is generated layer by layer, 
surrounded by the residual powder.  

A large number of parameters and factors influences the 
outcome of the M-LPBF process, during the in-process as 
well as during pre- and post-processes. For the in-process, 
these parameters include the definition of the exposure 
strategy, e.g. hatch definition, laser energy and scan speed, 
but also the environmental control of the build chamber, 
including gas flow, atmosphere and temperature. The 
extensive number of influencing parameters hinders the 
development of suitable methods for process control and 
quality assurance, especially as the quantitative correlation 
between the parameters, the process signatures and the 
process results are mostly unknown [5]. Thus, quality control 
measures for M-LPBF are largely limited to quality 
inspection. 

Current quality management (QM) techniques in 
traditional manufacturing are based on statistical analysis and 
require a large number of identical tests to create a sufficient 
database. As AM technologies are often applied for the 
production of small lot sizes, the process will not deliver an 
appropriate number of parts to apply these methods. Together 
with the limited availability of design rules and specified 
tolerance classes for AM technologies, it is extremely 
difficult to achieve a proven process capability [6]. The 
implementation of process monitoring systems in M-LPBF 
can help to evaluate and improve the repeatability of the build 
process. In the first stage, it can enable the identification of 
defects during the build process, in a final stage this may lead 
to the development of closed-loop control systems [7].  

Various approaches towards process monitoring for 
additive manufacturing are presented in research, mostly 
using optical measurement methods for different indicators. 
For several of these approaches, it is shown, that the 
measured signals change in areas, where parts show defects. 
Nevertheless, full proof of applicability for inline process 
monitoring is not yet available [3]. 

In commercial M-LPBF machines, different process 
monitoring solutions are integrated. These systems can be 
divided into five categories: condition monitoring, powder 
bed monitoring, laser power monitoring, melt pool 
monitoring and documentation of the individual layer 



www.manaraa.com

Eva Maria Scheideler, Andrea Huxol: In-Situ Process Monitoring in Additive Manufacturing Using Statistics and Pre-Process Data 

TEHNIČKI GLASNIK 14, 2(2020), 180-185                                                                                                                                                                                                               181 

surfaces. Condition monitoring systems use a variety of 
sensors to collect data on the general operation of the 
machine and supervise safety-relevant parameters. All other 
categories of monitoring systems are based on optical 
measurements. Photo diodes are used for monitoring the laser 
power and certain emissions from the melt pool. For 
monitoring of larger areas, like in powder bed or layer 
surface monitoring as well as monitoring the size and shape 
of the melt pool, camera systems are applied. 

At the current state, these systems are mainly collecting 
data, which is manually evaluated afterward. Changes in the 
signals are used as indicators for final part inspection. For 
applications of M-LPBF in series production, it is possible to 
compare the data of a larger number of parts to come to 
threshold values. However, this is not feasible for individual 
parts or very small lot sizes. Here, it is necessary to find a 
possibility to define general thresholds [3]. 

Furthermore, the large amount of data that is collected 
by the process monitoring tools is difficult to handle. Current 
systems mostly collect the data during the build process and 
analyse the entire data after the process is completed. 
 
3 RESEARCH APPROACH 
 

Currently, a lot of experience is required to operate an 
M-LPBF machine and produce high-quality parts. The 
experience gained by the operator can enable the 
identification of certain problems during the build process. 
For example, it is possible to identify parts with a very high 
energy input that have a high risk of curling or forming an 
uneven surface. This experience can be mimicked by image 
processing solutions. The presented research approach aims 
to develop an image processing methodology applicable to 
identify parts that are likely to show curling due to high local 
energy input. The methodology is intended to use simplified 
models for the calculation to achieve short processing times 
and thus, enable the application for in-process monitoring 
and control. This article provides the description of a 
practical implementation and solutions from the area of 
production.   

 
3.1 Preconditions  
 

An experimental design is prepared to identify 
influencing parameters on the part porosity. Therefore, cubes 
of 8 × 8 × 8 mm³ are built from a CoCrW dental alloy. The 
machine used in this experiment is a Realizer SLM 125 with 
a build chamber of 125 × 125 × 200 mm³. For documentation 
purpose, the machine captures images of each layer after 
spreading the powder layer and after the melting process by 
a monochromatic digital camera with a resolution of 
1280×720 pixel. 

The layer thickness is kept constant at 25 µm and the 
hatch is changing between X-hatch in odd layers and Y-hatch 
in even layers. All parts are built with different parameter 
combinations resulting in different volumetric energy 
densities. The volumetric energy density E is calculated 
according to Eq. (1) 
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Where P is the laser power in Watt, dp is the point 

distance in mm, te is the exposure time in s, dl is the layer 
thickness in mm and dh is the hatch distance in mm. The 
parameters laser power, point distance and exposure time are 
varied between three different values each, which results in 
volumetric energy densities between 30.00 and 
185.33 J/mm³. The observation of the build jobs reveals 
irregularities for the samples with the highest energy 
densities, as shown in Fig. 1. 
 

 
Figure 1 Formation of a curled part during the SLM process 

a) part height 0.65 mm, b) part height 0.675 mm, c) powder layer at part height 
1.125 mm. [8] 

 
For the top left sample in the pictures, an accumulation 

of burnt material is visible. Its position depends on the hatch 
direction (Fig. 1a and Fig. 1b). In successive layers a curling 
effect of the surface becomes obvious (Fig. 1c)) that can 
cause damages on the powder spreading system. These parts 
have to be deleted from the further build process. 
 
3.2 Image Processing  
 

The aim of the research approach is to develop an image 
processing methodology that can be applied to identify parts 
that are likely to show curling due to high local energy input. 
The methodology is intended to use simplified models for the 
calculation to achieve short processing times and thus, enable 
the application for in-process monitoring and control. 

In a first approach, the images captured after the melting 
of the individual layers are used to identify areas where burnt 
material is accumulating near parts with high energy input. 
To identify differences between the good and the substandard 
parts, images from the experimental setup as described in 3.1 
are analysed. Therefore, the surrounding areas of the cubic 
sample are separated into North, East, South and West 
regions, as shown in Fig. 2. 
 

 
Figure 2 Images processed for identification of burnt material. [8] 
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The four areas are selected corresponding to the hatch 
direction, as it has an influence on the position where the 
burnt material is deposited. In the current setup, in which X- 
and Y-hatches are used, the accumulation of burnt material is 
found either in the North or in the East area, depending on 
the layer. 

For each of the areas, the grayscale distribution is 
calculated and presented in the form of a histogram. A curve 
fitting with a standard Gaussian curve is applied to each of 
the histograms, Fig. 3. These show different results for areas 
with and without burnt material. The widths of the curves 
differ, as represented by the coefficient c1. A larger value 
indicates a larger width. Furthermore, the goodness of fit is 
different, which is represented by the R² value. A larger value 
indicates a better fit of the curve. 

 

 
Figure 3 Grayscale distribution and fitting of a Gaussian curve for a) East and b) 

North of sample 2 [8] 
 
By combining these to values an indicator Ib for the 

presence of burnt material can be calculated according to 
Eq. (2) 
 

1
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For the East area, where no burnt material is present, the 

indicator is IbE = 1.7, whereas the indicator for the North area 
is IbN = 13.2. A clear difference between the indicators is 
obvious. A further advantage of using a relative value as an 
indicator is that it filters the effect of different lighting 
situations in different areas of the build envelope, which can 
be seen in Fig. 2. These differences occur due to the 
arrangement of camera and light sources relative to the build 
platform, which is not concentric. Thus, a comparison of 
absolute values delivers results dependent on the part 
position. 
 
3.3 EXTENSION TOWARDS VARYING CROSS SECTIONS  
 

In chapter 3.2 the principal calculation method for the 
indicator is shown. The procedure is shown with the simple 
example of a cube that has edges parallel to the pixel matrix 
of the image. Furthermore, the cross sections are constant 

over the entire build height. This special situation makes it 
easy to evaluate the edges around the melted parts from the 
photo sections. However, if the components are more 
complex in their basic structure and the exposed areas change 
over the component height, this must be taken into account 
when determining the North, East, South and West areas to 
be evaluated. The scanning direction of the hatch in the 
respective layer is also to be considered.  

The shape of the histogram of areas with burnt material 
depends not only on the amount of burnt material, but also on 
the size of the partial area considered in principle. If, for 
example, a very large partial area is analysed in which only a 
small area segment is covered with burnt material, this will 
hardly be noticeable in the histogram and in the evaluation 
proposed in chapter 3.2. Furthermore, observations have 
shown that small melted areas also result in smaller areas 
with burnt material [15]. This means that the size of the 
partial areas to be investigated has to be determined 
depending on the structure and shape of the component to be 
built. 

The following procedure has been developed for this 
situation: The position and shape of the individual 
components per layer is known from the pre-process (Fig. 4).  

 

 
Figure 4 Image of layer 98 mm from pre-process. 

 
Based on this information, the size of the partial area to 

be exposed can be determined. Classical image processing 
tools can automatically determine the size, position and 
shape of the partial areas to be exposed layer by layer. In 
addition, information about the hatch strategy can be 
obtained to identify relevant areas for evaluation. 

Masks are created here from the pre-process images. If 
these masks are overlaid with the images of the build 
envelope, the actual components are faded out and thus only 
unexposed areas (powder bed) are visible for the grayscale 
analysis. 

It should be noted that the images of the build envelope 
are in distorted perspective, as the camera is located not 
centered in the build envelope at a distance of 22 cm from the 
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powder bed surface, while the images from the pre-process 
are generated by the computer and do not show any 
perspective distortion. In order to be able to overlay the 
generated masks with the image of the build envelope, the 
image distortions must be corrected by image 
transformations (Fig. 5). 

 

 
Figure 5 Transformed image a) Detail b) Detail with mask. 

 
3.4 Evaluation 
 

For evaluation, the developed method is applied to a 
successive build job. In this build job round tensile test 
specimen (Fig. 6) with conical clamping heads according to 
DIN 50125 – D 5 × 25 [14] with an increased parallel length 
of 80 mm (total length of 104 mm, maximum clamping head 
diameter of 18 mm) are built. The support in this build job is 
4 mm high. Therefore, the overall height of the build job is 
108 mm. 

 

 
Figure 6 Tensile test specimen [9] 

 

 
Figure 7 Position of good (B5) and sub-standard (A4) samples on the build 

platform [8] 
 
The evaluated images are captured during the production 

of the parallel section and the upper clamping head. Due to 

different parameter settings good and sub-standard parts are 
produced in this build job, as shown in Fig. 7.  

An accumulation of burnt material is clearly visible in 
the area of the sample A4. Furthermore, the final part shows 
a rather strong deformation of the surface, resulting in a sub-
standard quality of the part. In comparison to this, the sample 
B5 shows a smooth surface and no disturbances of the 
surrounding powder bed are visible during the build process.  

The developed image processing method is applied to the 
images form the layer height 73 mm to 108 mm, which 
includes 1070 successive layers. Fig. 7 shows the resulting 
indicator Ib for the analysed layers of the sample A4. The 
position of the deposited burnt material is depending on the 
hatch direction and changes between the layers with X- and 
Y-hatch. To enable an automated calculation of the indicator, 
it is calculated for all four regions in every layer. For further 
evaluation, the area with the lowest R2 value is considered in 
each layer. Those values are represented by the graph in Fig. 
8. 

 

 
Figure 8 Indicator Ib of sample A4 (Layer height 73 mm to 108 mm) 

 
From the diagram, it can be seen that the Ib value has a 

certain fluctuation margin, therefore a moving average over 
50 layers is used for further evaluation. Fig. 8 shows the 
moving average of the indicator Ib for the samples A4 and B5 
for the layer height from 73 mm to 108 mm. With these 
signals, the changes during the production of the individual 
components can be easily observed. 

 

 
Figure 9 Moving average of indicator Ib of sample A4 (height 73 mm to 108 mm) 
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The comparison of the values shows a significantly 
different behaviour of the indicator values for the two 
samples (Fig. 9). The indicator for sample B5 is at a low 
level. There is an increase of the indicator from the height 
where the constant cross-section merges into the conic area. 
The indicator curve of sample A4, however, shows clear 
differences. The indicator value already starts at a higher 
level. At the layer height of 88 mm, the value increases, 
reaches a local maximum and decreases again. In this range 
the cross-section of the tensile sample is still constant. By 
closer inspection of the images, a grey haze in the powder 
can be seen in the area of this sample (Fig. 10a and Fig. 10b). 
There is a clear second increase of the values in the area of 
the conic clamping head. Here, the cause is an accumulation 
of burnt material (Fig. 10d). 

 

 
Figure 10 Captures of part A4 (top right) at different layers 

 
This dissimilar behaviour of the different sections of the 

sample is likely to be caused by the different size of the 
exposed cross sections. While the inserted energy per square 
millimetre is the same, the overall amount is smaller due to 
the smaller cross-section in the layers representing the 
parallel length. Furthermore, the heat conduction is 
influenced not only by the exposed area in the layer itself but 
also by the volume of solidified material in the previous 
layers. 

 
4 CONCLUSION AND OUTLOOK  
 

The presented image processing method is currently 
applicable to identify parts which are likely to cause severe 
problems in successive layers. As only a limited area of the 
powder bed surface is analysed, applying standard 
procedures of image processing, the processing time is 
relatively short. Integrating this evaluation into the process 
monitoring tools of an M-LPBF machine can help to identify 

parts with problematic energy input before they start to grow 
out of the powder bed and may cause damages to the recoated 
system. 

To define the areas for monitoring, it is necessary to 
know, which parts of the powder bed are exposed in each 
layer. For further reduction of the processing time, additional 
information on the direction of the hatch scan can be 
included. As all this information is available before the start 
of the build job, the areas of interest can be calculated for 
each layer in advance. 

One of the next steps is to work out which signal changes 
lead to which actions in the build process. A first step could 
be to switch off individual problematic components and 
continue building the rest of the build job.  

A further possibility is the local reduction of the energy 
introduced into a component in the next layers as soon as a 
possible fault is detected [7].  

Investigations have shown that the volumetric energy 
density in relation to a component depends not only on the 
laser power but also on movement parameters of the laser 
[10]. In order to be able to reduce the energy introduced into 
the component, further investigations into the effects of the 
parameters of the volumetric energy density must be carried 
out. 
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